Restructuring of Ruth L. Kirschstein National Research Service Award Institutional Research Training Grants (T32 and T35) Supported by the National Institute of Environmental Health Sciences

Notice Number: NOT-ES-06-007
Key Dates Release Date: January 12, 2006
Issued by National Institute of Environmental Health Sciences (NIEHS), (http://www.niehs.nih.gov/)

All trainee research projects supported by the training grants should have a defined focus in the environmental health sciences, and be responsive to the mission of the NIEHS, which is distinguished from that of other Institutes by its support of research programs seeking to understand how environmental exposures alter biologic processes and affect the risk of either disease development or the distribution of disease in populations. Examples of environmental exposures relevant to the mission of the NIEHS include industrial chemicals or manufacturing by-products, metals, pesticides, herbicides, air pollutants and other inhaled toxicants, particulates or fibers, fungal or bacterially derived toxins due to ambient exposures. Agents considered to belong to the mission area of other NIH Institutes include: alcohol, chemotherapeutic agents, ionizing radiation, drugs of abuse, pharmaceuticals, smoking (except second-hand smoke), and infectious or parasitic agents, except when these are disease co-factors with an environmental toxicant exposure to produce the biological effect.

Training in ecology, ecologic or microbial biotransformation, ecologic biodegradation and remediation, ecological monitoring, wildlife and fisheries biology or studies of sentinel species, geochemistry and other ecologically based environmental studies is supported by the training component of the Superfund Basic Research Program, and will no longer be supported by the NIEHS National Research Service Awards (T32) Program. Training in veterinary medicine where the endpoint is animal health or in food science is also not responsive to the NIEHS NRSA Program. Training in exposure assessment should concentrate on exposure biology, which is at the interface of exposures and human health, and research centered on biomarkers as indicators of body burden, pathophysiological changes, or inception/progression of disease, rather than environmental measurement of ambient contact or point of exposure.